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Transverse dynamics of a collisionless plasma column in a homogeneous magnetic field
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Results of a general study of a set of kinetic equations describing the dynamics of a two-component
quasineutral collisionless plasma column in a homogeneous, nonstationary magnetic field are presented. The
dynamics of the column is found to be completely determined by initial values of total kinetic energy of a
plasma, total angular momentum of each plasma component, and total mass of a plasma. In the case of a
stationary magnetic field the column cross section is shown to oscillate harmonically at the low-hybrid fre-
quency. The peculiarities of the plasma dynamics found are confirmed by self-similar solutions of a set of two
Vlasov kinetic equations.

PACS numbd(s): 52.90+z

INTRODUCTION investigation. With the exception of a few papé¢see, for
instance, [25] where the magnetohydrodynami¢MHD)

Plasma expansion into a vacuum has been analyzed byraodel was developed to describe semi-infinite plasma ex-
great number of physicists in the three last decdde£7). pansion transverse to magnetic figlthe main attention of
Following the pioneering work by Gurevidi], most of the ~ researchers was paid to analysis of plasma diffusion trans-
theoretical studies of the problem have been based on théerse to the magnetic field, equilibrium configurations of a
mode| of Semi_infinite C0||ision|ess p|asma expanding in theplasma in an external magnetiC field and their instabilities.
absence of a magnetic field. Within this model the acceleral he goal of this research is to obtain a solution to the plasma
tion of ions leads to formation of an ion distribution function €xpansion problem in a plane transverse to the homogeneous
that is excessively enriched with energetic particles in comeXxternal magnetic field. The method of moments of distribu-
parison with the electron distribution function. Such a featurdion functions is used to solve the problem. This fruitful
results from an unlimited energy resource in initial plasmamethod was developed if26] to study a multicomponent
and can be expected in experiments when the plasma RJasma expansion, an expansion of a plasma bunch with
coupled with a plasma source that provides energy to keelectric current, and also dynamics of a two-component
electrons from cooling down during expansion. A differentPlasma in external, weakly inhomogeneous potential fields.
situation occurs if one deals with a plasma flame generates Will be demonstrated below, the method of moments
by an ultrashort laser pulse. In the latter case, the main paffakes it possible to determine the temporal behavior of
of the process of plasma expansion takes place after the las@i@sma column parameters in a given magnetic field. These
is turned Off Therefore, the expansion is accompanied b ; SUI-tS were l.:lsed to obtain a!’lalytical SolutiO.nS of two Vla:SOV
considerable cooling of plasma electrons. Until recently thekinetic equations that describe the dynamics of an axially
oretical studies of the problem have only been carried ousymmetric quasineutral plasma column in a spatially homo-
within a hydrodynamic approad}iG]' Focus on the kinetic 9€neous magnetic field directed along the axis of symmetry.
equations was made only in the 1990s. First, numerical simuSPecifically, the found solution can explain the plasma oscil-
lation [17,18 demonstrated a possibility of a self-similar re- lations observed in recent experimef@3].
gime of plasma expansion with electrons cooling in time.
Then, a series of self-similar solutions was found analytically
using different approximationg19-21. Finally, it was
shown[22] that an analytical solution of a set of two Vlasov  The exactly solvable physical model implies that there is
kinetic equations can be obtained in the three-dimensiona column of collisionless plasma with two sorts of particles
case under the quasineutral assumption. The solution hé&for example, electrons and ionghe column is located in a
been obtained for arbitrary relationships between the massegven homogeneous nonstationary magnetic field directed
and initial thermal energies of plasma particles of differentalong the axis of the column(Fig. 1),
sorts. According to the found solution, an initially confined
plasma bunch expands infinitely in the absence of external B=B(t)e, (1)
magnetic field. Both the electrons and the ions cool down in '
adiabatic manner and their thermal energy transfers to the
kinetic energy of plasma fluid motion with the same fluid whereg, ,e, e, are unit vectors of the cylindrical system of
velocity of electrons and ions. coordinatesi(,#,z). The plasma column is considered to be

A significant modification of the plasma bunch dynamicsaxially symmetric and homogeneous along thaxis. The
should be expected when an external magnetic field is aprector potentialA of the magnetic field and the potential of
plied to the system. Such a conclusion has been confirmed lsharge-separation electric fielg respectively, depend only
a number of laboratory experiments with laser-producedn one spatial variablg which is the distance from the axis
plasma23,24. This case, however, needs further theoreticalof symmetry of the column

I. BASIC MODEL

1063-651X/2000/6(B)/30585)/$15.00 PRE 61 3058 ©2000 The American Physical Society



PRE 61 TRANSVERSE DYNAMICS OF A COLLISIONLESS PLASM . .. 3059

z space and in external weakly inhomogeneous potential fields.
Specifically, following this method, the spatial structure of a
plasma column can be described by the second-order spatial
y moments:

(rer-)D,ENifffkrjfa(Vyr't)dVdr’ 6)

Nazf j f,(v,r,t)dvdr,

whereN,, is the total number of particles of satt per unit
length of the plasma column, ang,r; denote thex andy
FIG. 1. General configuration of the considered system. components of the transverse radius vectoin the case of
interest (two-component symmetrical plasma columihme
1 tensorgrr;), are equal for different sorts of particles due to
B=[V.xXA], Ar)=5B(Vre,, ¢=¢(r1), the quasineutral approximatigd) and can be expressed via
@) one scalar function of time

Jd d

r=(xy), r=x2+y? VE(—,—). 1

(xy) oo e ey (i Ya=3512(0 3y, ®)
Particles of each sort are described by distribution functions

K 2 —/r2\—/y2 2
f,, that do not depend om Therefore, they satisfy the fol- () =(r)=(x"+y)q, (7)
lowing Vlasov kinetic equations: ) )
where gy is the Kroneker symbol, i.e.,

of, o€ ) ) . .
ot TV VOt = (B V)T, sy=1 if k=], &4=0 if k#j.
e According to Eq.(7) the functionl(t) can be treated as a
+m C([v>< B]-V,)f,=0, €] characteristic spatial scale of the column cross section. The
@ evolution of the latter can be found by integrating the kinetic
i i inliar r2-
Ly *1 IA equationg3) with multiplier r<:
Vo

d, B
al =2(rve),  (rv)=(Xvyt+Yyvy),, (8)

Jd 0
V=(oxvy) V= ( Ay’ dvy where the combined coordinate-velocity momgnt, ) is de-
) fined by analogy with Eq(5). Note that according to E¢8)
whereZ.e andm, are the charge and mass of particles ofjt should be the same for different species of the plasma. The
sort a, respectively, and is the velocity of light. The po-  supsequent integration of Eq8) results in the following set
tential of charge-separation electric fiefdis found in the  of equations for the second-order moments:
course of the solution to the quasineutral approximation that

is a commonly accepted approach to analyzing dynamics of a d )
sufficiently dense plasma. It implies that a(rUJ:E VD) ot 2 a0 (10 )0 ©)

Z,n,(r,t)=0, n,r,t)=| f,(v,r,t)dv, (4) d do,
; f i Eal Ma<02>a:_§a: m%(fw}a, (10)

wheren(r,t) is the density of particles of sott.

On the one hand, the quasineutral approximation imposes d ldo, , ,
a definite restriction on possible initial distribution functions gil{Tvwe=—0urv) =5 —=(r), (12)
of particles of different sorts. They should be chosen so as to
prevent excitation of Langmuir oscillations in a plasma. On m.N Z e
the other hand, the assumpti@f) completes the set of basic o= K/I <M EE m,N,, w“Emac B(t),

equations(1)—(4) and makes it possible to obtain an exact

solution of the latter. ) )
where M is the total mass per unit length of the plasma

column andw,, is the cyclotron frequency of particles of sort
a. Equations(9)—(11) include momentgv?), and(rv ),
A fruitful approach to analysis of Eq&3) and(4) is based ~ which are defined, by analogy witf1®),(rv,), as
on the method of moments of the distribution functions de- 5 5 5
veloped in[26] to investigate the plasma dynamics in free V)=V HV9)ar (10 =(Xvy=YVx),. (12

Il. GENERAL ANALYSIS
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Note that these new moments may not coincide for differentvhere the constant value on the right is determined by the
species in contrast to the previous oge$,({rv,). initial distribution functions of the particles.

It is important that, unlike the well-known hydrodynamic  Specifically, in the simplest case of stationary magnetic
description, the full moments of distribution functions havefield the total plasma kinetic energy is found to be constant,
been used for the analysis. This means integration not onlgnd Eq.(17) has a stationary solution,
over velocityv but also over coordinates The advantage of

such an approach is a finite set of equations for the moments
(8)—(11). 12=12=—|2W+ > w,J,|=const,  (18)
Equationg8)—(11) have transparent integrals correspond- MQ @
ing to conservation of the component of the total canonical
angular momentum of particles of each sert that is determined by the magnetic field stren@htotal
transverse plasma kinetic energy and total canonical an-
_ Do, o | gular momentumd,,. If initial conditions are different from
Ja=MaNg| (rvy)at 2 (r%)|=const. 13 those defined by Eq18), i.e.,
Using these integrals it is possible to obtain from the system I(t=0)#ly and/or dl/dt+0,
(8)—(11) one third-order differential equation for the plasma
spatial scald, the plasma cross section oscillates harmonically in time
d—3|2+93(m2)=o 02=> p,0° (14) d?
a8 dt ’ R — 12+ 071%2-12]=0. (19

dt?
where the frequenc§ is equal to the low-hybrid frequency
for a sufficiently dense plasma: The frequency() of these oscillations does not depend on
their amplitude and is equal to the low-hybrid frequency for
02— 1—[ o, a sufficient_ly d_ense plasma. _ _
L 1 %al The oscillations can also be excited from a stationary state
due to temporal variation of magnetic field. However, when

It is remarkable that one more integral of E¢®)—(11) is  the strength of magnetic field varies slowly in time, so that
found to exist:

5 dQ<QZ
2w 1 1 di ar <5
- _02?212_| _ 2
Y, ; o) 797 (dt) }l (1)
a quasistationary state of the plasma column is sustained. In
=> w.Vi2=const, W= m,N(v?,, this case the parameters of the column follow the well-
a a known adiabatic law

(19
Ql2%=const, W/Q=const.
whereW is the total transverse kinetic energy of plasma per
unit length of the column, and the momer¥§ can be
treated as a spread of the velocities of particles of gavith

respect to a certain fluid velocity that is proportional to the  The method of moments considered in Sec. Il of the paper

IIl. EXACT SOLUTION

distance from the column axis does not allow for a complete description of the dynamics of
) 5 the plasma column in a homogeneous magnetic field. For
Ve=((V=Ua)%)a example, it leaves unknown temporal evolution of the kinetic

energy of each plasma component
wa

dl
ua(r,t)zr[llaer—?qﬁ . (16)

W =

a

maNa<vz>a *

N| -

Note that according to Eq.16) the radial components of
fluid velocitiesu,, are equal for both sorts of particles. At the
same time, the angular components that are proportional
the magnetic field strengt® depend on the mass and charge
of particles.

The integral(15) makes it possible to reduce the equation
for the plasma spatial scal@4) to

tAt the same time, rather complicated relationships between
8ifferent moments of the distribution functios5) result in
some difficulties in setting the values of these moments at
the initial moment of time. It is clear that these problems will
not arise if an exact solution of the system of Vlasov kinetic
equations(3) and (4) is found. Such a solution is closely

2 connected with the integrald3) and(15). Similarly to[22]

5 d 124 22 i b d th h arbi f [ f
B—I+-02%=> o V212=const, (17) it can be represented through arbitrary functions of two ar-
2 4 a guments:
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fa(varlt):Fa(Galga)! a:112; (20) Na
)\QE_2

m, 3/2
27TT001 '

(v—u—w,)? r?

@ V2(t) 12(t) wherel is the initial spatial scale of the plasma column, and

Ty, is the initial temperature of particles of satt In this
case the solution of Eq$3) and(4) is

Sl i =const, (20

v p( r2 mu?
f (0, VI, )=\, exp — ———
_rd _ Qe 29 ‘ 12(t)  2Toa
U(r,t)=|—aer, W“(r’t)=_7r6¢1 (22) M, (V—U— w,kre,)? 26
X exp — AN (20

where the parameter of the solutidnis nothing but the

plasma spatial scale E€7). Consequently, it is governed by [, 12 rdl

Eq. (17) The pgrameterk/a are treated as spreadg of .the Ta(t)zTOQ[%} , u(r,t)zl-aer, (27)
velocities of particles of soi@ with respect to a certain fluid

velocity, which coincides with Eq.16)

L B 28
Vi=((v—u—w,)?,. K_B(t)lz(t) ' (28)
Note that the quasineutral approximation generally dewhereB, is the initial strength of the magnetic field ahd)
mandsF, to satisfy only one integral condition is governed by Eq(17),
2 2
> Zaf F,(v,r,t)dv=0. (23 3d_ E 2 425 2|4 ﬂ
— | O|t2|+49 1=2 085+ 1 ; N.To. (29

The solution(20)—(22) allows one to calculate the spatial

o e -2 under the following initial conditions:
distribution of the charge-separated electric field potential: g

2 I(t=0)=1,,

G =0 Qo=0(t=0).
E. (24) t=0

V(1) ?

a

1 1
2 yeelrn= _Z, Z.N,

a a

12(t) 4

In the simplest case of a stationary magnetic field, Eq.
The result(24) corresponds to a uniform density of spatial (29) describes harmonic oscillations of the plasma column:
charge, that contradicts the starting assumption of plasma
guasineutrality(4) at the periphery of the column where the AW
plasma density is low. Therefore, the soluti(®0)—(22) is 12=15+ W[l—coim)], W=2 N,To,. (30
not quite correct everywhere in space. However, the most ¢
credible speculation is that a perturbation of this solution is
considerable only at the column periphery if the plasma is IV. DISCUSSION
dense enough. At least such a result was earlier obtained in . . . L .
numerical simulations of semi-infinite plasma expansion into Itis expedient to d_|scuss applicability of th? solutico)
a vacuum([3] and of an equilibrium plasma column in a found to the description of the actual dynamics of a plasma

homogeneous magnetic fiel#8]. It should be noted that the C€0IUMN in @ homogeneous magnetic field. As was mentioned
solution found in[28] is very close to the stationary case of above, the quasineutral approximation is violated at the col-

Eds. (20)—(22) evervwhere in space with the exception of a YmMnN periphery. However, it can be used to describe plasma
th?n I;yér %e;r the }(,:Vglumn boul?ndary. P dynamics in the bulk of the column if the plasma is suffi-

ciently dense there. Specifically for the above considered ex-
ample with Maxwellian distribution functions for electrons
and ions Eq(26), the following inequality should be satis-
A specific example of the exact solutig@0)—(22) in  fied:

which the condition(23) can be easily fulfilled is the case
where the distribution functions, have the same form and
depend on one argument only. In particular, initially isotro- Ne>;

. ; A . e
pic Maxwellian distributions of electrons and ions over ve-
locities are considered belowr&e,i),

Example

Tem—Tit—g — +1?

2 2
Me Mewg [ Bolg
m ( 5 . (31

On the other hand, the obtained solution corresponds to
2 the presence of a certain distribution of angular current. It

r2 my m,v2 i ic fi
f (v, v, t=0)=\, exp — = — ——— ex;{ @ ) generates the intrinsic electromagnetic field of the plasma,
“ “ 13 2Toa which has not been taken into account in the basic model
(25 considered. In particular, it is possible to evaluate this field

- 2To,



3062 D. S. DOROZHKINA AND V. E. SEMENOV PRE 61

for the solution(26) since the spatial distribution of the CONCLUSION
plasma angular current in this case is expressed in a simple 5 complete description of the dynamics of the plasma
form:

column in the homogeneous magnetic field has been given

within the kinetic model. In the case of a stationary magnetic

jrH=>, Z,€N,0 KT (32 field the column cross section is found to oscillate harmoni-
a cally at the low-hybrid frequency. The method applied for

) the analysis is very fruitful and can be used for investigation
The estimates show that the effect of the electromagnetigf plasma dynamics in a number of other cases.

field caused by this current can be neglected if the following
inequality holds: ACKNOWLEDGMENTS
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