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Transverse dynamics of a collisionless plasma column in a homogeneous magnetic field

D. S. Dorozhkina and V. E. Semenov
Institute of Applied Physics, RAS, 46 Ulyanov Street, 603600 Nizhny Novgorod, Russia

~Received 30 August 1999!

Results of a general study of a set of kinetic equations describing the dynamics of a two-component
quasineutral collisionless plasma column in a homogeneous, nonstationary magnetic field are presented. The
dynamics of the column is found to be completely determined by initial values of total kinetic energy of a
plasma, total angular momentum of each plasma component, and total mass of a plasma. In the case of a
stationary magnetic field the column cross section is shown to oscillate harmonically at the low-hybrid fre-
quency. The peculiarities of the plasma dynamics found are confirmed by self-similar solutions of a set of two
Vlasov kinetic equations.

PACS number~s!: 52.90.1z
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INTRODUCTION

Plasma expansion into a vacuum has been analyzed
great number of physicists in the three last decades@1–22#.
Following the pioneering work by Gurevich@1#, most of the
theoretical studies of the problem have been based on
model of semi-infinite collisionless plasma expanding in
absence of a magnetic field. Within this model the accele
tion of ions leads to formation of an ion distribution functio
that is excessively enriched with energetic particles in co
parison with the electron distribution function. Such a feat
results from an unlimited energy resource in initial plas
and can be expected in experiments when the plasm
coupled with a plasma source that provides energy to k
electrons from cooling down during expansion. A differe
situation occurs if one deals with a plasma flame genera
by an ultrashort laser pulse. In the latter case, the main
of the process of plasma expansion takes place after the
is turned off. Therefore, the expansion is accompanied
considerable cooling of plasma electrons. Until recently t
oretical studies of the problem have only been carried
within a hydrodynamic approach@16#. Focus on the kinetic
equations was made only in the 1990s. First, numerical si
lation @17,18# demonstrated a possibility of a self-similar r
gime of plasma expansion with electrons cooling in tim
Then, a series of self-similar solutions was found analytica
using different approximations@19–21#. Finally, it was
shown@22# that an analytical solution of a set of two Vlaso
kinetic equations can be obtained in the three-dimensio
case under the quasineutral assumption. The solution
been obtained for arbitrary relationships between the ma
and initial thermal energies of plasma particles of differe
sorts. According to the found solution, an initially confine
plasma bunch expands infinitely in the absence of exte
magnetic field. Both the electrons and the ions cool down
adiabatic manner and their thermal energy transfers to
kinetic energy of plasma fluid motion with the same flu
velocity of electrons and ions.

A significant modification of the plasma bunch dynam
should be expected when an external magnetic field is
plied to the system. Such a conclusion has been confirme
a number of laboratory experiments with laser-produc
plasma@23,24#. This case, however, needs further theoreti
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investigation. With the exception of a few papers@see, for
instance, @25# where the magnetohydrodynamics~MHD!
model was developed to describe semi-infinite plasma
pansion transverse to magnetic field#, the main attention of
researchers was paid to analysis of plasma diffusion tra
verse to the magnetic field, equilibrium configurations o
plasma in an external magnetic field and their instabiliti
The goal of this research is to obtain a solution to the plas
expansion problem in a plane transverse to the homogen
external magnetic field. The method of moments of distrib
tion functions is used to solve the problem. This fruitf
method was developed in@26# to study a multicomponen
plasma expansion, an expansion of a plasma bunch
electric current, and also dynamics of a two-compon
plasma in external, weakly inhomogeneous potential fie
As will be demonstrated below, the method of mome
makes it possible to determine the temporal behavior
plasma column parameters in a given magnetic field. Th
results were used to obtain analytical solutions of two Vlas
kinetic equations that describe the dynamics of an axia
symmetric quasineutral plasma column in a spatially hom
geneous magnetic field directed along the axis of symme
Specifically, the found solution can explain the plasma os
lations observed in recent experiments@27#.

I. BASIC MODEL

The exactly solvable physical model implies that there
a column of collisionless plasma with two sorts of particl
~for example, electrons and ions!. The column is located in a
given homogeneous nonstationary magnetic field direc
along the axis of the columnz ~Fig. 1!,

B5B~ t !ez , ~1!

whereer ,ec ,ez are unit vectors of the cylindrical system o
coordinates (r ,c,z). The plasma column is considered to b
axially symmetric and homogeneous along thez axis. The
vector potentialA of the magnetic field and the potential o
charge-separation electric fieldw, respectively, depend only
on one spatial variabler, which is the distance from the axi
of symmetry of the column
3058 ©2000 The American Physical Society
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B5@“ r3A#, A~r ,t !5
1

2
B~ t !rec , w5w~r ,t !,

~2!

r[~x,y!, r[Ax21y2, “ r[S ]

]x
,

]

]yD .

Particles of each sort are described by distribution functi
f a that do not depend onz. Therefore, they satisfy the fol
lowing Vlasov kinetic equations:

] f a

]t
1~v•“ r ! f a1

Zae

ma
~E•“v! f a

1
Zae

mac
~@v3B#•“v! f a50, ~3!

E[2“ rw*
1

c

]A

]t
,

v[~vx ,vy!, “v[S ]

]vx
,

]

]vy
D ,

whereZae and ma are the charge and mass of particles
sort a, respectively, andc is the velocity of light. The po-
tential of charge-separation electric fieldw is found in the
course of the solution to the quasineutral approximation
is a commonly accepted approach to analyzing dynamics
sufficiently dense plasma. It implies that

(
a

Zana~r ,t !50, na~r ,t ![E f a~v,r ,t !dv, ~4!

wherena(r ,t) is the density of particles of sorta.
On the one hand, the quasineutral approximation impo

a definite restriction on possible initial distribution functio
of particles of different sorts. They should be chosen so a
prevent excitation of Langmuir oscillations in a plasma. O
the other hand, the assumption~4! completes the set of basi
equations~1!–~4! and makes it possible to obtain an exa
solution of the latter.

II. GENERAL ANALYSIS

A fruitful approach to analysis of Eqs.~3! and~4! is based
on the method of moments of the distribution functions d
veloped in@26# to investigate the plasma dynamics in fr

FIG. 1. General configuration of the considered system.
s
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space and in external weakly inhomogeneous potential fie
Specifically, following this method, the spatial structure o
plasma column can be described by the second-order sp
moments:

^r kr j&a[
1

Na
E E r kr j f a~v,r ,t !dvdr , ~5!

Na[E E f a~v,r ,t !dvdr ,

whereNa is the total number of particles of sorta per unit
length of the plasma column, andr k ,r j denote thex and y
components of the transverse radius vectorr . In the case of
interest ~two-component symmetrical plasma column! the
tensorŝ r kr j&a are equal for different sorts of particles due
the quasineutral approximation~4! and can be expressed v
one scalar function of time

^r kr j&a5
1

2
l 2~ t !dk j , ~6!

l 2~ t ![^r 2&[^x21y2&a , ~7!

wheredk j is the Kroneker symbol, i.e.,

dk j51 if k5 j , dk j50 if kÞ j .

According to Eq.~7! the function l (t) can be treated as
characteristic spatial scale of the column cross section.
evolution of the latter can be found by integrating the kine
equations~3! with multiplier r 2:

d

dt
l 252^rv r&, ^rv r&[^xvx1yvy&a , ~8!

where the combined coordinate-velocity moment^rv r& is de-
fined by analogy with Eq.~5!. Note that according to Eq.~8!
it should be the same for different species of the plasma.
subsequent integration of Eqs.~3! results in the following set
of equations for the second-order moments:

d

dt
^rv r&5(

a
ma^v2&a1(

a
mava^rvc&a , ~9!

d

dt (
a

ma^v2&a52(
a

ma

dva

dt
^rvc&a , ~10!

d

dt
^rvc&a52va^rv r&2

1

2

dva

dt
^r 2&, ~11!

ma[
maNa

M
, M[(

a
maNa , va[

Zae

mac
B~ t !,

where M is the total mass per unit length of the plasm
column andva is the cyclotron frequency of particles of so
a. Equations~9!–~11! include momentŝv2&a and ^rvc&a ,
which are defined, by analogy witĥr 2&,^rv r&, as

^v2&a[^vx
21vy

2&a , ^rvc&a[^xvy2yvx&a . ~12!
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Note that these new moments may not coincide for differ
species in contrast to the previous ones^r 2&,^rv r&.

It is important that, unlike the well-known hydrodynam
description, the full moments of distribution functions ha
been used for the analysis. This means integration not o
over velocityv but also over coordinatesr . The advantage o
such an approach is a finite set of equations for the mom
~8!–~11!.

Equations~8!–~11! have transparent integrals correspon
ing to conservation of thez component of the total canonica
angular momentum of particles of each sorta:

Ja[maNaF ^rvc&a1
va

2
^r 2&G5const. ~13!

Using these integrals it is possible to obtain from the sys
~8!–~11! one third-order differential equation for the plasm
spatial scalel,

d3

dt3
l 21V

d

dt
~V l 2!50, V2[(

a
mava

2 , ~14!

where the frequencyV is equal to the low-hybrid frequenc
for a sufficiently dense plasma:

V25)
a

uvau.

It is remarkable that one more integral of Eqs.~8!–~11! is
found to exist:

F2W

M
1

1

M (
a

vaJa2
1

4
V2l 22S dl

dtD
2G l 2~ t !

[(
a

maVa
2 l 25const, 2W[(

a
maNa^v2&a ,

~15!

whereW is the total transverse kinetic energy of plasma
unit length of the column, and the momentsVa

2 can be
treated as a spread of the velocities of particles of sorta with
respect to a certain fluid velocity that is proportional to t
distance from the column axisr,

Va
2[^~v2ua!2&a

ua~r ,t ![r F l 21
dl

dt
er2

va

2
ecG . ~16!

Note that according to Eq.~16! the radial components o
fluid velocitiesua are equal for both sorts of particles. At th
same time, the angular components that are proportiona
the magnetic field strengthB depend on the mass and char
of particles.

The integral~15! makes it possible to reduce the equati
for the plasma spatial scale~14! to

l 3
d2

dt2
l 1

1

4
V2l 45(

a
maVa

2 l 25const, ~17!
t

ly

ts

-

m

r

to

where the constant value on the right is determined by
initial distribution functions of the particles.

Specifically, in the simplest case of stationary magne
field the total plasma kinetic energy is found to be consta
and Eq.~17! has a stationary solution,

l 25 l st
2 [

2

MV2 F2W1(
a

vaJaG5const, ~18!

that is determined by the magnetic field strengthB, total
transverse plasma kinetic energyW, and total canonical an
gular momentumsJa . If initial conditions are different from
those defined by Eq.~18!, i.e.,

l ~ t50!Þ l st and/or dl/dtÞ0,

the plasma cross section oscillates harmonically in time

d2

dt2
l 21V2@ l 22 l st

2 #50. ~19!

The frequencyV of these oscillations does not depend
their amplitude and is equal to the low-hybrid frequency
a sufficiently dense plasma.

The oscillations can also be excited from a stationary s
due to temporal variation of magnetic field. However, wh
the strength of magnetic field varies slowly in time, so th

dV

dt
!V2,

a quasistationary state of the plasma column is sustained
this case the parameters of the column follow the we
known adiabatic law

V l st
2 5const, W/V5const.

III. EXACT SOLUTION

The method of moments considered in Sec. II of the pa
does not allow for a complete description of the dynamics
the plasma column in a homogeneous magnetic field.
example, it leaves unknown temporal evolution of the kine
energy of each plasma component

Wa[
1

2
maNa^v2&a .

At the same time, rather complicated relationships betw
different moments of the distribution functions~15! result in
some difficulties in setting the values of these moments
the initial moment of time. It is clear that these problems w
not arise if an exact solution of the system of Vlasov kine
equations~3! and ~4! is found. Such a solution is closel
connected with the integrals~13! and~15!. Similarly to @22#
it can be represented through arbitrary functions of two
guments:
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f a~v,r ,t !5Fa~Ga ,ga!, a51,2; ~20!

Ga5
~v2u2wa!2

Va
2~ t !

1
r 2

l 2~ t !
,

ga5
ez•@r3~v2wa!#

Va~ t !l ~ t !
, Va~ t !l ~ t !5const, ~21!

u~r ,t ![
r

l

dl

dt
er , wa~r ,t ![2

va

2
rec , ~22!

where the parameter of the solutionl is nothing but the
plasma spatial scale Eq.~7!. Consequently, it is governed b
Eq. ~17!. The parametersVa are treated as spreads of th
velocities of particles of sorta with respect to a certain fluid
velocity, which coincides with Eq.~16!

Va
2[^~v2u2wa!2&a .

Note that the quasineutral approximation generally
mandsFa to satisfy only one integral condition

(
a

ZaE Fa~v,r ,t !dv50. ~23!

The solution~20!–~22! allows one to calculate the spati
distribution of the charge-separated electric field potentia

(
a

1

Ma
ew~r ,t !52(

a

1

ZaNa
FVa

2~ t !

l 2~ t !
1

va
2

4 G r 2

2
. ~24!

The result~24! corresponds to a uniform density of spat
charge, that contradicts the starting assumption of pla
quasineutrality~4! at the periphery of the column where th
plasma density is low. Therefore, the solution~20!–~22! is
not quite correct everywhere in space. However, the m
credible speculation is that a perturbation of this solution
considerable only at the column periphery if the plasma
dense enough. At least such a result was earlier obtaine
numerical simulations of semi-infinite plasma expansion i
a vacuum@3# and of an equilibrium plasma column in
homogeneous magnetic field@28#. It should be noted that the
solution found in@28# is very close to the stationary case
Eqs.~20!–~22! everywhere in space with the exception of
thin layer near the column boundary.

Example

A specific example of the exact solution~20!–~22! in
which the condition~23! can be easily fulfilled is the cas
where the distribution functionsf a have the same form an
depend on one argument only. In particular, initially isotr
pic Maxwellian distributions of electrons and ions over v
locities are considered below (a5e,i ),

f a~vz ,v,r ,t50!5la expS 2
r 2

l 0
2

2
mavz

2

2T0a
D expS 2

mav2

2T0a
D ,

~25!
-

a

st
s
s
in

o

-
-

la[
Na

p l 0
2 S ma

2pT0a
D 3/2

,

wherel 0 is the initial spatial scale of the plasma column, a
T0a is the initial temperature of particles of sorta. In this
case the solution of Eqs.~3! and ~4! is

f a~vz ,v,r ,t !5la expS 2
r 2

l 2~ t !
2

mavz
2

2T0a
D

3expS 2
ma~v2u2vakrec!2

2Ta~ t ! D , ~26!

Ta~ t !5T0aF l 0

l ~ t !G
2

, u~r ,t ![
r

l

dl

dt
er , ~27!

2k[
B0l 0

2

B~ t !l 2~ t !
21, ~28!

whereB0 is the initial strength of the magnetic field andl (t)
is governed by Eq.~17!,

l 3
d2

dt2
l 1

1

4
V2l 45

1

4
V0

2l 0
41

2l 0
2

M (
a

NaT0a ~29!

under the following initial conditions:

l ~ t50!5 l 0 ,
dl

dt U
t50

50, V0[V~ t50!.

In the simplest case of a stationary magnetic field, E
~29! describes harmonic oscillations of the plasma colum

l 25 l 0
21

4W

MV2
@12cos~Vt !#, W5(

a
NaT0a . ~30!

IV. DISCUSSION

It is expedient to discuss applicability of the solution~20!
found to the description of the actual dynamics of a plas
column in a homogeneous magnetic field. As was mentio
above, the quasineutral approximation is violated at the c
umn periphery. However, it can be used to describe plas
dynamics in the bulk of the column if the plasma is suf
ciently dense there. Specifically for the above considered
ample with Maxwellian distribution functions for electron
and ions Eq.~26!, the following inequality should be satis
fied:

Ne@
1

2e2 UTe2
me

mi
Ti1

meve
2

8 S B0l 0
2

B
1 l 2DU. ~31!

On the other hand, the obtained solution correspond
the presence of a certain distribution of angular current
generates the intrinsic electromagnetic field of the plas
which has not been taken into account in the basic mo
considered. In particular, it is possible to evaluate this fi
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for the solution ~26! since the spatial distribution of th
plasma angular current in this case is expressed in a sim
form:

j ~r ,t ![(
a

Zaenavakrec . ~32!

The estimates show that the effect of the electromagn
field caused by this current can be neglected if the follow
inequality holds:

e2Ne!mec
2. ~33!

It is important that the inequalities~31! and~33! can be ful-
filled simultaneously.
e

tt

id

ev
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CONCLUSION

A complete description of the dynamics of the plasm
column in the homogeneous magnetic field has been g
within the kinetic model. In the case of a stationary magne
field the column cross section is found to oscillate harmo
cally at the low-hybrid frequency. The method applied f
the analysis is very fruitful and can be used for investigat
of plasma dynamics in a number of other cases.
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